In this post, I’m going to take myself through a review of standard concentration inequalities in probability theory with an ultimate goal of exploring empirical Bernstein bounds.
Note: Not all of the proofs are finished/included. I am hoping to find the time to return to thist post and complete them.
Concentration Inequalities
In this section, we’ll cover four main concentration inequalities that will aid in understanding later sections of this post. These are covered in Vershynin1 and Wasserman2 Two very standard concentration inequalities are Markov’s inequality and Chebyshev’s inequality.
Let $X$ be a non-negative random variable with finite mean (i.e. $\mathbb{E}[X]$ exists). For any choice of $t > 0$, we have: $$ \mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t} \nonumber $$
Proof.
Let $f(x)$ denote the probability density function of $X$. Since $X \geq 0$, we have: $$ \begin{aligned} \mathbb{E}[X] = \int_0^\infty x f(x) dx = \underbrace{\int_0^t x f(x) dx}_{\geq 0} + \int_t^\infty xf(x) dx \geq \int_t^\infty x f(x) \overset{(i)}{\geq} t \int_t^\infty f(x) dx = t \mathbb{P}(X \geq t) \end{aligned} \nonumber $$ In $(i)$, we use the fact that on the interval $[t, \infty]$, $x \geq t$.Let $X$ be a random variable with finite mean $\mathbb{E}\left[X\right] = \mu$ and finite variance $V(X) = \sigma^2$. Define $Z = \frac{X - \mu}{\sigma}$. We have: $$ \mathbb{P}(\rvert X - \mu \rvert \geq t) \leq \frac{\sigma^2}{t^2} \hspace{10mm} \text{ and } \hspace{10mm} \mathbb{P}(\rvert Z \rvert \geq k) \leq \frac{1}{k^2} \nonumber $$
Proof.
Since $\rvert X - \mu \rvert \geq 0$, we can use Markov's Inequality: $$ \mathbb{P}(\rvert X - \mu \rvert \geq t) = \mathbb{P}(\rvert X - \mu \rvert^2 \geq t^2) \leq \frac{\mathbb{E}\left[ (X - \mu)^2 \right]}{t^2} \overset{(i)}{=} \frac{\sigma^2}{t^2} \nonumber $$ In $(i)$, we choose $t = k \sigma$.A very important tail bound that will be helpful for the remainder of this post is Hoeffding’s inequality, which bounds the deviation of the sum of independent, bounded random variables from their mean.
Let $X_1, \dots, X_n$ be independent random variables such that $a_i \leq X_i \leq b_i$ almost surely. Let $\mathbb{E}[X_i] =: \mu_i$. For any $t > 0$: $$ \mathbb{P}\left(\sum_{i = 1}^n (X_i - \mu_i) \geq t \right) \leq \exp \left( - \frac{2 t^2}{\sum_{i = 1}^n (b_i - a_i)^2} \right) \nonumber $$
Proof.
First, we show the reformulation. Choose some $t > 0$ and let $\delta = \exp \left( - \frac{2t^2}{\sum_{i = 1}^n (b_i - a_i)^2} \right)$. Then: $$ \begin{aligned} -\log(\delta) &= \frac{2t^2}{\sum_{i = 1}^n (b_i - a_i)^2} \\ \implies t^2 &= \frac{\sum_{i = 1}^n (b_i - a_i)^2 \log\left(\frac{1}{\delta} \right)}{2} \\ \implies t &= \sqrt{\frac{1}{2}\sum_{i = 1}^n (b_i - a_i)^2 \log\left(\frac{1}{\delta}\right)} \end{aligned} \nonumber $$ Putting the above together with the converse of the first probability expression yields the reformulation.TODO: FINISH PROOF
An important note made in Vershynin1 is the fact that this bound is non-asymptotic; that is, it holds for any choice of $n$. The bound just becomes tighter as the sample size grows.
Unfortunately, Hoeffding’s inequality is independent of the variances of the random variables in question. We can imagine that a better bound could be obtained when the variances are small since we know they should remain close to the means. Bernstein inequalities aim to do this by trading sharpness in cases with large variance for improved bounds in cases with small variance.
There are several similar Berstein inequalities, one of which I’ve written below:
Let $X_1, \dots, X_n$ be i.i.d. bounded random variables (i.e. their support is $[a, b]$ for finite $a, b$). Let $\mathbb{E}[X_i] =: \mu$ and $\mathbb{E}\left[ (X - \mu)^2 \right] =: \sigma^2$. For any $t \geq $, We have: $$ \mathbb{P}\left( \bigg\rvert \frac{1}{n} \sum_{i = 1}^n X_i - \mu \bigg\rvert \geq t \right) \leq 2 \exp\left( -\frac{n t^2}{2(\sigma^2 + (b-a) t)} \right) \nonumber $$
Proof.
TODO: FINISH PROOF
Bennett’s inequality is similar to the Bernstein inequalities in that it bounds the sum of independent random variables in a variance-dependent fashion.
Let $X_1, \dots, X_n$ be independent random variables with finite mean $\mathbb{E}[X_i] =: \mu$. Let $\sigma^2 := \sum_{i = 1}^n \mathbb{E}\left[ (X_i - \mathbb{E}[X_i])^2\right]$. For all $i$, suppose $\rvert X_i - \mathbb{E}[X_i] \rvert \leq a$ almost surely. For any $t \geq $, We have: $$ \mathbb{P}\left( \sum_{i = 1}^n (X_i - \mathbb{E}[X_i]) \geq t \right) \leq \exp\left( -\frac{\sigma^2}{a^2} \left[ \left(1 + \frac{at}{\sigma^2}\right) \log\left(1 + \frac{at}{\sigma^2}\right) - \frac{at}{\sigma^2} \right] \right) \nonumber $$
Proof.
TODO: FINISH PROOF
We also have the following variation on Bennett’s inequality from Audibert et al. (2009).
Let $X \in \mathbb{R}$ be a random variable such that $X \leq s$ for some $s \in \mathbb{R}$ almost surely. Denote $\mu := \mathbb{E}[X]$ and $s_+ := s \vee 0$. Define $X_1, \dots, X_n$ as independent and identically distributed copies of $X$. Let $\bar{U}_m := \frac{1}{m} \sum_{i = 1}^m U_i$. Then, for any $\delta > 0$ and simultaneously for all $1 \leq m \leq n$, with probability at least $ 1 - \exp(-\delta)$: $$ \begin{aligned} &m(\bar{U}_m - \mu) \leq \sqrt{2 n \mathbb{E}[U^2]\delta} + \frac{s_+ \delta}{3}\\ &m(\bar{U}_m - \mu) \leq \sqrt{2 n \text{Var}(U)\delta} + \frac{(s - \mu)\delta}{3} \end{aligned} \nonumber $$ A proof can be found in the publication.
Empirical Bernstein bounds
Equipped with a solid understanding of the above inequalities, we can dive into “Empirical Bernstein Bounds and Sample Variance Penalization” by Maurer and Pontil.5
Background
We’ll assume we have some random variable, $X$, under study that comes from some sample space, $\mathcal{X}$. Let $\mu$ denote the law of $X$, and let $\ell$ be some loss function. We’ll use $\ell_h(X)$ to denote the loss of hypothesis $h$ for observed value $X$.
The risk is defined by the expected loss with respect to $\mu$, $R(\ell_h, \mu) := \mathbb{E}_{X \sim \mu}\left[ \ell_h(X) \right]$. For an i.i.d. sample, $\mathbf{X} := (X_1, \dots, X_n)$, we can estimate the risk of hypothesis $h$ with the empirical risk, which is the empirical mean of the loss, $R_n(\ell_h, \mathbf{X}) := \frac{1}{n} \sum_{i = 1}^n \ell_h(X_i)$.
Assuming that the boundedness conditions are satisfied by $\ell_h$, we can use Hoeffding’s inequality to get, with probability $1 - \delta$ (for any $\delta > 0$):
\[\big\rvert R_n(\ell_h, \mathbf{X}) - R(\ell_h, \mu) \big \rvert \leq \sqrt{\frac{1}{2}\sum_{i = 1}^n (b_i - a_i)^2 \log\left(\frac{2}{\delta} \right)} \nonumber\]Recall that machine learning is often concerned with hypothesis selection (e.g. model fitting, parameter estimation, etc.) via empirical risk minimization, which is a procedure that picks the hypothesis that minimizes $R_n(f, \mu)$ over all $f \in \mathcal{F}$. The basic idea is that if the empirical risk is similar to the true risk, then we will end up picking the best hypothesis. If we have some guarantee on the difference between the empirical and true risk, then learning will be possible with large enough sample sizes!
In later proofs, we will need to use some measure of the complexity of a function class. For a fixed $\epsilon > 0$, function class $\mathcal{F}$, and sample size $n$, we’ll define the growth function, which is an extension of covering numbers. However, we’ll need some intermediate definitions first.
Let $T$ be some set, let $d$ be some distance metric, and let $(T, d)$ be the metric space created by their pairing. Pick $\epsilon > 0$ and some subset $K \subset T$. An $\epsilon$-net of $K$ is defined as any subset $\mathcal{N} \subseteq K$ such that: $$ \forall x \in K, \hspace{3mm} \exists x_0 \in \mathcal{N} \hspace{3mm} \text{such that} \hspace{3mm} d(x, x_0) \leq \epsilon \nonumber $$
Intuitively, a subset $\mathcal{N}$ is an $\epsilon$-net of $K$ if all the points in $K$ can be contained in a ball of radius $\epsilon$ centered at some points in $\mathcal{N}$ (i.e. $K$ can be covered).
The covering number of subset $K$ is defined as the smallest cardinality of any $\epsilon$-net of $K$. It will depend on the distance metric, $K$, and the choice of $\epsilon$, so we denote it by $\mathcal{N}(\epsilon, K, d)$.
Vershynin provides a very good alternative explanation of the covering number: the smallest number of balls with centers in $K$ and radii of $\epsilon$ that completely cover $K$.
For function class $\mathcal{F}$, the growth function is defined by: $$ \mathcal{N}_{\infty}(\epsilon, \mathcal{F}, n) = \underset{\mathbf{x} \in X^n}{\sup} \mathcal{N}\left( \epsilon, \mathcal{F}(\mathbf{x}), \rvert \rvert \cdot \rvert \rvert_{\infty} \right) \nonumber $$ where $\mathcal{F}(\mathbf{X}) = \{ (f(x_1), \dots, f(x_n)) \rvert f \in \mathcal{F} \} \subseteq \mathbb{R}^n$ and $\rvert \rvert f \rvert \rvert_\infty = \underset{X \in \mathcal{X}}{\sup} \rvert f(X) \rvert$ is the uniform norm.
The growth function is the least upper bound (over all samples of size $n$) on the covering number of the set of all hypotheses in $\mathcal{F}$ applied to the sample $\mathbf{x}$ with respect to the distance metric associated with $\rvert \rvert \cdot \rvert \rvert_{\infty}$.
The growth function is also called the shattering number or the shattering coefficient of a set, but growth function is the terminology used in the original work of Vapnik and Chervonenkis.
Results
This section will rely on common notation. Let $[0, 1]^n$ be the $n$-dimensional unit cube, and let \(\mathbf{x} := (x_1, \dots, x_n) \in [0, 1]^n\) be a point in the cube. Denote and define the sample mean and variance with \(P_n(\mathbf{x}) := \frac{1}{n}\sum_{i = 1}^n x_i\) and \(V_n(\mathbf{x}) := \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j = 1}^n \frac{(x_i - x_j)^2}{2}\), respectively.
For a function $f$, we will use \(f(\mathbf{x}) := (f(x_1), \dots, f(x_n))\) to denote the function applied element-wise to the sample vector $\mathbf{x}$. Similarly, we will use \(P_n(f, \mathbf{x}) := P_n(f(\mathbf{x}))\) and \(V_n(f, \mathbf{x}) := V_n(f(\mathbf{x}))\).
For distribution $\mu$, the $n$-fold product is $\mu^n$. General product measures are denoted with $\times$ or $\prod$. For $X \sim \mu$ and function $f$, \(P(f, \mu) := \mathbb{E}_{X \sim \mu}[f(X)]\) and \(V(f, \mu) := V_{X \sim \mu} f(X)\) which will be notated more simply as $\mathbb{E}[f(X)]$ and $V(f(X))$, respectively.
Inequalities
Notice that, although the Bernstein inequalities and Bennett’s inequality can provide better bounds, they require knowledge of the unknown variance. Maurer and Pontil first derive an inequality similar to those of Bernstein and Bennett that only requires calculation of the sample variance.
Let $\mathbf{X} = (X_1, \dots, X_n)$ be a vector with independent random variables taking values in $[0, 1]$. Let $\delta > 0$. With probability at least $1 - \delta$ in $\mathbf{X}$: $$ \mathbb{E}\left[ P_n(\mathbf{X}) \right] \leq P_n(\mathbf{X}) + \sqrt{\frac{2V_n(\mathbf{X}) \log(2/\delta)}{n}} + \frac{7 \log(2/\delta)}{3(n-1)} \nonumber $$ where we recall that $P_n(\mathbf{X}) := \frac{1}{n} \sum_{i = 1}^n X_i$, the sample average.
If the $X_i \in [a, b]$ instead, then with probability at least $1 - \delta$: $$ \sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - X_i \right] \leq n\sqrt{\frac{2V_n(\mathbf{X}) \log(2 / \delta)}{n}} + \frac{7 (b-a)n\log(2/\delta)}{3(n-1)} \nonumber $$
Proof.
We'll first write $W := \frac{1}{n} \sum_{i = 1}^n V(X_i)$, the average variance of each $X_i$ (since they aren't necessarily identically distributed). Note that $W \leq \mathbb{E}[V_n(\mathbf{X})]$.Proof.
$$ \begin{aligned} W &= \frac{1}{n} \sum_{i = 1}^n V(X_i) \\ &= \frac{1}{n} \sum_{i = 1}^n \mathbb{E}\left[ (X_i - \mathbb{E}[X_i])^2 \right] \\ &\leq \frac{1}{n} \sum_{i = 1}^n \mathbb{E}\left[ (X_i - \mathbb{E}[X_i])^2 \right] + \frac{1}{2n(n-1)}\sum_{i = 1}^n \sum_{i \neq j} \left( \mathbb{E}[X_i] - \mathbb{E}[X_j] \right)^2 \hspace{10mm} \text{(Adding a positive quantity)} \\ &= \frac{1}{n}\sum_{i = 1}^n \mathbb{E}\left[ X_i^2 + (\mathbb{E}[X_i])^2 - 2 X_i \mathbb{E}[X_i] \right] + \frac{1}{n(n-1)}\sum_{i = 1}^n \sum_{j < i}\left( (\mathbb{E}[X_i])^2 + (\mathbb{E}[X_j])^2 - 2 \mathbb{E}[X_i]\mathbb{E}[X_j] \right) \\ &= \frac{1}{n} \sum_{i = 1}^n \left( \mathbb{E}\left[ X_i^2 \right] - (\mathbb{E}[X_i])^2 \right) + \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j < i} \left[(\mathbb{E}[X_i])^2 + (\mathbb{E}[X_j])^2 - 2\mathbb{E}[X_i]\mathbb{E}[X_j] \right] \\ &= \frac{1}{n} \sum_{i = 1}^n \mathbb{E}\left[ X_i^2 \right] - \frac{1}{n} \sum_{i = 1}^n (\mathbb{E}[X_i])^2 + \frac{n-1}{n(n-1)} \sum_{i = 1}^n (\mathbb{E}[X_i])^2 + \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j < i} \left[ (\mathbb{E}[X_j])^2 - 2\mathbb{E}[X_i]\mathbb{E}[X_j] \right] \\ &= \frac{1}{n} \sum_{i = 1}^n \mathbb{E}\left[ X_i^2 \right] + \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j < i} \left[ (\mathbb{E}[X_j])^2 - 2\mathbb{E}[X_i]\mathbb{E}[X_j] \right] \\ &= \sum_{i = 1}^n \left( \frac{1}{n} \mathbb{E}\left[ X_i^2 \right] + \frac{1}{n(n-1)} \sum_{j < i} \left[ (\mathbb{E}[X_j])^2 - 2\mathbb{E}[X_i]\mathbb{E}[X_j] \right]\right) \\ &= \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j < i} \left( \mathbb{E}\left[ X_i^2 \right] + (\mathbb{E}[X_j])^2 - 2\mathbb{E}[X_i]\mathbb{E}[X_j]\right) \\ &= \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j < i}\left( \mathbb{E}[(X_i - X_j)^2] \right) \\ &= \frac{1}{2n(n-1)} \sum_{i = 1}^n \sum_{j \neq i}\left( \mathbb{E}[(X_i - X_j)^2] \right) \\ &= \frac{1}{2n(n-1)} \sum_{i = 1}^n \sum_{j = 1}^n \left( \mathbb{E}[(X_i - X_j)^2] \right) \hspace{10mm} X_i - X_j = 0 \text{ for } i = j \\ &= \mathbb{E}[V_n(\mathbf{X})] \end{aligned} \nonumber $$Since the probability of having both $\sqrt{\mathbb{E}[V_n(\mathbf{X})]} \leq \sqrt{V_n(\mathbf{X})} + \sqrt{\frac{2\log\left(\frac{1}{\delta}\right)}{n-1}}$ AND the statement in Eq. \eqref{eq:bennett} satisfied is less than or equal to the sum of their individual probabilities (via the union bound), we can pick $\delta = 2\epsilon$ for any $\epsilon > 0$ to ensure that, with probability at least $1 - 2\epsilon = 1 - \delta$: $$ \begin{aligned} P_n(\mathbf{X}) + 2\sqrt{\mathbb{E}[V_n(\mathbf{X})]} \sqrt{\frac{\log\left(\frac{1}{\epsilon}\right)}{2n}} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} &\leq P_n(\mathbf{X}) + 2\left(\sqrt{V_n(\mathbf{X})} + \sqrt{\frac{2 \log\left(\frac{1}{\epsilon}\right)}{n-1}} \right)\sqrt{\frac{\log\left(\frac{1}{\epsilon}\right)}{2n}} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} \\ &= P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{1}{\epsilon}\right)}{n}} +\sqrt{\frac{4\log^2\left(\frac{1}{\epsilon}\right)}{n(n-1)}} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} \\ &= P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{1}{\epsilon}\right)}{n}} +\frac{2\log\left(\frac{1}{\epsilon}\right)}{\sqrt{n(n-1)}} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} \\ &\leq P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{1}{\epsilon}\right)}{n}} +\frac{2\log\left(\frac{1}{\epsilon}\right)}{\sqrt{n^2}} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} \hspace{10mm} n^2 \geq n(n-1) \implies n^{-1} \leq (n(n-1))^{-1/2} \\ &= P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{1}{\epsilon}\right)}{n}} +\frac{6\log\left(\frac{1}{\epsilon}\right)}{3n} + \frac{\log\left(\frac{1}{\epsilon}\right)}{3n} \\ &= P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{1}{\epsilon}\right)}{n}} +\frac{7\log\left(\frac{1}{\epsilon}\right)}{3n} \\ &= P_n(\mathbf{X}) + \sqrt{\frac{2 V_n(\mathbf{X}) \log\left(\frac{2}{\delta}\right)}{n}} +\frac{7\log\left(\frac{2}{\delta}\right)}{3n} \hspace{10mm} \epsilon = \frac{\delta}{2} \end{aligned} \nonumber $$ To show the second statement, suppose that the $X_i \in [a, b]$. We can repeat the prior argument with $Z_i := \frac{X_i - a}{b - a}$ so that $Z_i \in [0,1]$ and then rearrange the result to get a bound for $X_i$. $$ \begin{aligned} V_n(\mathbf{Z}) &= \frac{1}{2n(n-1)}\sum_{i = 1}^n \sum_{j = 1}^n (Z_i - Z_j)^2 \\ &= \frac{1}{2n(n-1)}\sum_{i = 1}^n \sum_{j = 1}^n \left( \frac{X_i - a}{b-a} - \frac{X_j - a}{b-a}\right)^2 \\ &= \frac{1}{2n(n-1)(b-a)^2}\sum_{i = 1}^n \sum_{j = 1}^n \left( X_i - X_j \right)^2 \\ &= \frac{1}{(b-a)^2} V_n(\mathbf{X}) \end{aligned} \nonumber $$ Applying Theorem 11 to the $Z_i$'s, we get that, with probability at least $1 - \delta$: $$ \begin{aligned} &\mathbb{E}\left[ \frac{1}{n}\sum_{i = 1}^n \frac{X_i - a}{b-a} \right] \leq \frac{1}{n} \sum_{i = 1}^n \frac{X_i - a}{b-a} + \sqrt{\frac{2V_n(\mathbf{Z}) \log(2 / \delta)}{n}} + \frac{7 \log(2/\delta)}{3(n-1)} \\ \implies &\frac{1}{b-a}\sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - a \right] \leq \sum_{i = 1}^n \frac{X_i - a}{b-a} + n\sqrt{\frac{2V_n(\mathbf{Z}) \log(2 / \delta)}{n}} + \frac{7 n\log(2/\delta)}{3(n-1)} \\ \implies &\frac{1}{b-a}\sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - a - X_i + a\right] \leq n\sqrt{\frac{2V_n(\mathbf{Z}) \log(2 / \delta)}{n}} + \frac{7 n\log(2/\delta)}{3(n-1)} \\ \implies &\sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - X_i \right] \leq n(b-a)\sqrt{\frac{2V_n(\mathbf{Z}) \log(2 / \delta)}{n}} + \frac{7 (b-a)n\log(2/\delta)}{3(n-1)} \\ \implies &\sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - X_i \right] \leq n(b-a)\sqrt{\frac{2V_n(\mathbf{X}) \log(2 / \delta)}{(b-a)^2n}} + \frac{7 (b-a)n\log(2/\delta)}{3(n-1)} \\ \implies &\sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - X_i \right] \leq n\sqrt{\frac{2V_n(\mathbf{X}) \log(2 / \delta)}{n}} + \frac{7 (b-a)n\log(2/\delta)}{3(n-1)} \\ \end{aligned} \nonumber $$
Details Of Restatement.
Theorem 11 states that, with probability at least $1 - \delta$: $$ \sum_{i = 1}^n \left[ \mathbb{E}\left[ X_i \right] - X_i \right] \leq n\sqrt{\frac{2V_n(\mathbf{X}) \log(2 / \delta)}{n}} + \frac{7 (b-a)n\log(2/\delta)}{3(n-1)} \nonumber $$ We set $t$ equal to righthand side of the above and solve for $\delta$: $$ \begin{aligned} &t = n \left[ \sqrt{\frac{2 V_n(\mathbf{X}) \log(2/\delta)}{n}} + \frac{7 (b-a) \log(2/\delta)}{3(n-1)} \right] \\ \implies &t = 2\sqrt{\log(2/\delta)}\sqrt{\frac{nV_n(\mathbf{X})}{2}} + \frac{7 (b-a) n\log(2/\delta)}{3(n-1)} \\ \implies &\frac{3(n-1)t}{7 (b-a) n} = 2\sqrt{\log(2/\delta)}\left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right) + \log(2/\delta) \\ \implies &\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2= 2\sqrt{\log(2/\delta)}\left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right) + \log(2/\delta) + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2 \\ \implies &\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2 = \left(\sqrt{\log(2/\delta)} + \frac{3(n-1)\sqrt{\frac{n V_n(\mathbf{X})}{2}}}{7(b-a)n}\right)^2 \\ \implies &\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} = \sqrt{\log(2/\delta)} + \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \\ \implies &\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} = \sqrt{\log(2/\delta)} \\ \implies &\left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)^2 = \log(2/\delta) \\ \implies &2 / \delta = \exp \left( \left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)^2 \right) \\ \implies &\delta = 2\exp\left(- 2\left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)\right) \end{aligned} \nonumber $$ Thus, for any $t > 0$: $$ \mathbb{P}\left( \sum_{i = 1}^n \left[\mathbb{E}[X_i] - X_i \right] \geq t\right) \leq 2\exp\left(- 2\left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)\right) \nonumber $$ We can repeat the entire argument where we instead multiply each $X_i$ by $-1$. Since $\mathbb{E}[-X_i] = -\mathbb{E}[X_i]$, we see that, for any $t > 0$: $$ \mathbb{P}\left( \sum_{i = 1}^n \left[-\mathbb{E}[X_i] - (-X_i) \right] \geq t\right) = \mathbb{P}\left( - \sum_{i = 1}^n \left[X_i - \mathbb{E}[X_i] \right] \geq t\right) \leq 2\exp\left(- 2\left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a)n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)\right) \nonumber $$ Putting the two together we get: $$ \mathbb{P}\left( \bigg\rvert \sum_{i = 1}^n \left[X_i - \mathbb{E}[X_i] \right]\bigg\rvert \geq t\right) \leq 4\exp\left(- 2\left(\sqrt{\frac{3(n-1)t}{7 (b-a) n} + \left(\frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7 (b-a) n}\right)^2} - \frac{3(n-1)\sqrt{\frac{nV_n(\mathbf{X})}{2}}}{7(b-a)n} \right)\right) \nonumber $$Additional Results
The authors then extend this result to finite function classes and present a uniform bound for particular function classes. See the original paper for proofs.
Let $X$ be a random variable taking values in $\mathcal{X}$ and with distribution $\mu$. Let $\mathbf{X} = (X_1, \dots, X_n)$ be an i.i.d. sample with distribution $\mu$. Let $\mathcal{F}$ be a class of hypotheses $f: \mathcal{X} \rightarrow [0, 1]$ such that $\rvert \mathcal{F} \rvert < \infty$. For any choice of $\delta > 0$ and $n \geq 2$, with probability at least $1 - \delta$ for all $f \in \mathcal{F}$: $$ R(f, \mu) - R_n(f, \mathbf{X}) \leq \sqrt{\frac{2 V_n(f, \mathbf{X}) \log(2 \rvert \mathcal{F} \rvert/ \delta)}{n}} + \frac{7 \log(2 \rvert \mathcal{F} \rvert / \delta)}{3(n - 1)} \nonumber $$ with $V_n(f, \mathbf{X}) := V_n(f(X_1), \dots, f(X_n))$.
Let $X$ be a random variable taking values in $\mathcal{X}$ and with distribution $\mu$. Let $\mathbf{X} = (X_1, \dots, X_n)$ be an i.i.d. sample with distribution $\mu$. Let $\mathcal{F}$ be the class of hypotheses $f: \mathcal{X} \rightarrow [0, 1]$. Pick $\delta \in (0, 1)$, $n \geq 16$ and let $\mathcal{M}(n) = 10 \times \mathcal{N}_{\infty}\left( \frac{1}{n}, \mathcal{F}, 2n \right)$. With probability at least $1 - \delta$, for all $f \in \mathcal{F}$: $$ R(f, \mu) - R_n(f, \mathbf{X}) \leq \sqrt{\frac{18 V_n(f, \mathbf{X}) \log(\mathcal{M}(n)/\delta)}{n}} + \frac{15 \log(\mathcal{M}(n) / \delta)}{n - 1} \nonumber $$
The previous theorem essentially bounds (with high probability) the difference between the empirical and true risk of all hypotheses ins the defined function class as a function of the sample variance and the function class’s complexity (as measured by the growth function).
Helper Proofs
Some additional theorems/lemmata are necessary for the proofs of the main results.
Proof.
TODO: FINISH PROOF
Proof is in Concentration Inequalities for Functions of Independent Variables by Andreas Maurer (2006).Suppose $X$ and $Y$ are i.i.d. random variables that are bounded in $[a, a + 1]$. We have that: $$ \mathbb{E}_X\left[ \left( \mathbb{E}_Y \left[ (X - Y)^2 \right] \right)^2 \right] \leq \frac{1}{2}\mathbb{E}\left[ (X - Y)^2 \right] \nonumber $$
Proof.
First, the righthand side is equal to the variance. $$ \begin{aligned} \frac{1}{2}\mathbb{E}\left[ (X - Y)^2 \right] &= \frac{1}{2} \mathbb{E}\left[ X^2 + Y^2 - 2XY \right] \\ &= \frac{1}{2}\mathbb{E}\left[ X^2 \right] + \frac{1}{2}\mathbb{E}\left[ Y^2 \right] - \mathbb{E}\left[ X\right] \mathbb{E}\left[ Y \right] \hspace{10mm} (X, Y \text{ are independent})\\ &= \mathbb{E}\left[ X^2 \right] - \left(\mathbb{E}\left[ X \right]\right)^2 \hspace{10mm} (X, Y \text{ are identically distributed}) \\ &= \mathbb{E}\left[ X^2 - XY \right] \hspace{10mm} (X, Y \text{ are identically distributed}) \end{aligned} \nonumber $$ Expanding out the lefthand side yields: $$ \begin{aligned} \mathbb{E}_X\left[ \left( \mathbb{E}_Y \left[ (X - Y)^2 \right] \right)^2 \right] &= \mathbb{E}_X\left[ \left( \mathbb{E}_Y \left[ X^2 + \mathbb{E}[Y^2] - 2X\mathbb{E}[Y] \right] \right)^2 \right] \\ &= \mathbb{E} \left[ \left( X^2 + Y^2 - 2XY \right)^2 \right] \\ &= \mathbb{E}_X \left[ X^4 + X^2 \mathbb{E}[Y^2] - 2X^3\mathbb{E}[Y] + X^2 \mathbb{E}[Y^2] + \left( \mathbb{E}[Y^2] \right)^2 - 2X \mathbb{E}[Y] \mathbb{E}[Y^2] - 2X^3\mathbb{E}[Y] - 2X \mathbb{E}[Y] \mathbb{E}[Y^2] + 4 X^2\left(\mathbb{E}[Y]\right)^2\right] \\ &= \mathbb{E}_X\left[ X^4 + 2X^2\mathbb{E}[Y^2] - 4X^3 \mathbb{E}[Y] + (\mathbb{E}[Y^2])^2 -4X\mathbb{E}[Y]\mathbb{E}[Y^2] + 4X^2 (\mathbb{E}[Y])^2\right] \\ &= \mathbb{E}[X^4] + 2 \mathbb{E}[X^2]\mathbb{E}[Y^2] - 4 \mathbb{E}[X^3]\mathbb{E}[Y] + (\mathbb{E}[Y^2])^2 - 4 \mathbb{E}[X] \mathbb{E}[Y] \mathbb{E}[Y^2] + 4 \mathbb{E}[X^2] (\mathbb{E}[Y])^2 \\ &= \mathbb{E}[X^4] + 3\mathbb{E}[X^2]\mathbb{E}[Y^2] - 4\mathbb{E}[X^3]\mathbb{E}[Y] \hspace{10mm} (X,Y \text{ are identically distributed}) \end{aligned} \nonumber $$ Using the above facts, it suffices to show that the difference between the righthand side and lefthand side is greater than or equal to zero. That is, to show: $$ \mathbb{E}[g(X,Y)] \geq 0 \hspace{5mm} \text{ where } \hspace{5mm} g(X,Y) := X^2 - XY - X^4 - 3X^2Y^2 + 4X^3Y \nonumber $$ Consider the following: $$ \begin{aligned} (X - Y + 1)(Y - X + 1)(Y-X)^2 &= (Y-X)^2(XY - X^2 + X - Y^2 + XY - Y + Y - X + 1) \\ &= (Y - X)^2(2XY - X^2 - Y^2 + 1) \\ &= (Y^2 + X^2 - 2XY)(2XY - X^2 - Y^2 + 1) \\ &= 2Y^3X - X^2 Y^2 - Y^4 + Y^2 + 2X^3Y - X^4 - X^2 Y^2 + X^2 - 4X^2Y^2 + 2X^3Y + 2Y^3X - 2XY \\ &= 4Y^3X + 4X^3Y -3X^2Y^2 - 3X^2Y^2 - XY - XY + Y^2 + X^2 - Y^4 - X^4 \\ &= (4X^3Y - X^4+ 4X^3Y - 3X^2Y^2- XY + X^2) + (4Y^3X -3X^2Y^2 - XY + Y^2 - Y^4) \\ &= g(X,Y) + g(Y,X) \end{aligned} \nonumber $$ Since $\rvert X - Y \rvert \leq 1$ due to their boundedness, $(X - Y + 1) \geq 0$ and $(Y - X + 1) \geq 0$ as well. Thus, $g(X,Y) + g(Y,X) \geq 0$. $$ 2\mathbb{E}[g(X,Y)] = \mathbb{E}[g(X,Y) + g(Y,X)] \geq 0 \implies \mathbb{E}[g(X,Y)] \geq 0 \nonumber $$Lemma 8 yields the following corollary if $X$ and $Y$ are uniformly distributed over some set of values ${ x_1, \dots, x_n }$ with finite cardinality. If we assume ${ x_1, \dots, x_n } \subset [0, 1]$, then:
\[\frac{1}{n} \sum_{k = 1}^n \left( \frac{1}{n}\sum_{j = 1}^n (x_k - x_j)^2 \right)^2 \leq \frac{1}{2n^2} \sum_{k = 1}^n \sum_{j = 1}^j (x_k - x_j)^2 \nonumber\]We use the above corollary in the proof of the following theorem.
Let $n \geq 2$, and let $\mathbf{X} = (X_1, \dots, X_n)$ be a vector of independent random variables such that $X_i \in [0, 1]$ for all $i$. Let $\mathbb{E}[V_n] := \mathbb{E}_\mathbf{X}[V_n(\mathbf{X})]$ where $V_n := V_n(\mathbf{x}) = \frac{1}{n(n-1)} \sum_{i = 1}^n \sum_{j = 1}^n \frac{(x_i - x_j)^2}{2}$ is the sample variance. For any $\delta > 0$, we have: $$ \begin{aligned} (a) &\hspace{10mm} \mathbb{P}\left( \sqrt{\mathbb{E}[V_n]} > \sqrt{V_n(\mathbf{X})} + \sqrt{\frac{2 \log(1/\delta)}{n - 1}}\right) \leq \delta \\ (b) &\hspace{10mm} \mathbb{P} \left( \sqrt{V_n(\mathbf{X})} > \sqrt{\mathbb{E}[V_n]} + \sqrt{\frac{2\log(1/\delta)}{n - 1}} \right) \leq \delta \end{aligned} \nonumber $$
Proof.
Let $Z(\mathbf{X}) := n V_n(\mathbf{X})$. Choose some $k$ and any $y \in [0, 1]$. It follows that: $$ \begin{aligned} Z(\mathbf{X}) - Z(\mathbf{X}_{y,k}) &= \frac{n}{n(n-1)}\sum_{i = 1}^n \sum_{j = 1}^n \frac{(X_i - X_j)^2}{2} - \frac{1}{n(n-1)} \left(\frac{(y - y)^2}{2} + \sum_{j \neq k} \frac{(y - X_j)^2}{2} + \sum_{i \neq k} \left( \frac{(X_i - y)^2}{2} + \sum_{j \neq k} \frac{(X_i - X_j)^2}{2}\right) \right) \\ &= \frac{2}{n-1}\sum_{j = 1}^n \left[ \frac{(X_k - X_j)^2}{2} - \frac{(y - X_j)^2}{2} \right] \\ &= \frac{1}{n-1} \sum_{j = 1}^n \left[ (X_k - X_j)^2 - \underbrace{(y - X_j)^2}_{\geq 0} \right] \\ &\leq \frac{1}{n-1} \sum_{j = 1}^n (X_k - X_j)^2 \\ \end{aligned} \nonumber $$ We should note that the summation is over $n$ indices, but we could easily reduce it to only $n-1$ (restricting $j \neq k$). Thus, the last line above is the sample average of the $(X_k - X_j)^2$'s. Since each $X_i \in [0, 1]$ and $y \in [0, 1]$ it is clear that $Z(\mathbf{X}) - \underset{y \in [0, 1]}{\inf} Z(\mathbf{X}_{y,k}) \leq 1$. Then: $$ \begin{aligned} \sum_{k = 1}^n \left( Z(\mathbf{X}) - \underset{y \in [0, 1]}{\inf} Z(\mathbf{X}_{y,k}) \right)^2 &\leq \sum_{k = 1}^n \left( \frac{1}{n-1} \sum_{j = 1}^n (X_k - X_j)^2 \right)^2 \hspace{10mm} \text{(above result)} \\ &= \sum_{k = 1}^n \left( \frac{1}{n-1}\sum_{j = 1}^n (X_k - X_j)^2 \right)^2 \\ &\leq \frac{n}{2(n-1)^2} \sum_{k = 1}^n \sum_{j = 1}^n (X_k - X_j)^2 \hspace{10mm} \text{(corollary of Lemma 8)}\\ &= \frac{n}{n-1}\left[ \frac{1}{n-1} \sum_{k = 1}^n \sum_{j = 1}^n \frac{(X_k - X_j)^2}{2} \right] \\ &= \frac{n}{n-1}Z(\mathbf{X}) \end{aligned} \nonumber $$ The above steps show that $Z(\mathbf{X})$ satisfy conditions $(a)$ and $(b)$ in Theorem 7 where $a = \frac{n}{n-1}$. Now, notice that: $$ \begin{aligned} &\mathbb{P}\left(\mathbb{E}\left[ V_n(\mathbf{X}) \right] - V_n(\mathbf{X}) > t\right) = \mathbb{P}\left(\mathbb{E}\left[ \frac{1}{n}V_n(\mathbf{X})\right] - \frac{1}{n}Z(\mathbf{X})> t \right) = \mathbb{P}\left( \mathbb{E}\left[ Z(\mathbf{X}) \right] - Z(\mathbf{X}) > nt \right) \\ &\mathbb{P}\left(-\mathbb{E}\left[ V_n(\mathbf{X}) \right] + V_n(\mathbf{X}) > t\right) = \mathbb{P}\left(-\mathbb{E}\left[ \frac{1}{n}V_n(\mathbf{X})\right] + \frac{1}{n}Z(\mathbf{X})> t \right) = \mathbb{P}\left( -\mathbb{E}\left[ Z(\mathbf{X}) \right] + Z(\mathbf{X}) > nt \right) \\ \end{aligned} \nonumber $$ Applying Theorem 7, we have, for any $t > 0$: $$ \begin{aligned} &\mathbb{P}\left(\mathbb{E}[Z(\mathbf{X})] - Z(\mathbf{X}) > nt \right) \leq \exp\left( -\frac{t^2n^2(n-1)}{2n\mathbb{E}[Z(\mathbf{X})]}\right) = \exp \left(- \frac{t^2n(n-1)}{2\mathbb{E}\left[n V_n(\mathbf{X}) \right]} \right) = \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \right)\\ &\mathbb{P}\left(Z(\mathbf{X}) - \mathbb{E}[Z(\mathbf{X})] > nt\right) \leq \exp \left( - \frac{t^2n^2(n-1)}{2n\mathbb{E}[Z(\mathbf{X})] + n^2t} \right) = \exp \left(-\frac{t^2n(n-1)}{2\mathbb{E}\left[nV_n(\mathbf{X})\right] + nt} \right) = \exp \left( - \frac{t^2(n-1)}{2\mathbb{E}[V_n(\mathbf{X})] + t} \right) \end{aligned} \nonumber $$ This implies that: $$ \begin{aligned} &\mathbb{P}\left(\mathbb{E}\left[ V_n(\mathbf{X}) \right] - V_n(\mathbf{X}) > t\right) \leq \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \right) \\ &\mathbb{P}\left(-\mathbb{E}\left[ V_n(\mathbf{X}) \right] + V_n(\mathbf{X}) > t\right) \leq \exp \left( - \frac{t^2(n-1)}{2\mathbb{E}[V_n(\mathbf{X})] + t} \right) \end{aligned} \label{eq:intermed-probs} $$ The first line in Eq. \eqref{eq:intermed-probs} implies that with probability at least $1 - \delta$: $$ \mathbb{E}\left[ V_n(\mathbf{X}) \right] - V_n(\mathbf{X}) \leq \sqrt{\frac{2 \mathbb{E}\left[V_n(\mathbf{X}) \right] \log \left( \frac{1}{\delta} \right)}{n-1}} \implies \mathbb{E}\left[ V_n(\mathbf{X}) \right] - \sqrt{\frac{4 \mathbb{E}\left[V_n(\mathbf{X}) \right] \log \left( \frac{1}{\delta} \right)}{2(n-1)}} \leq V_n(\mathbf{X}) \implies \mathbb{E}\left[ V_n(\mathbf{X}) \right] - 2\sqrt{\mathbb{E}\left[V_n(\mathbf{X})\right]}\sqrt{ \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} \leq V_n(\mathbf{X}) \nonumber $$Proof.
We simply solve the following for $t$: $$ \mathbb{P}\left(\mathbb{E}\left[ V_n(\mathbf{X}) \right] - V_n(\mathbf{X}) > t\right) \leq \delta = \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \right) \nonumber $$ Thus: $$ \begin{aligned} \delta &= \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \right) \\ &\implies \log (\delta) = -\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \\ &\implies \log \left( \frac{1}{\delta} \right) = \frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right]} \\ &\implies 2 \mathbb{E}\left[V_n(\mathbf{X}) \right] \log \left( \frac{1}{\delta} \right) =t^2(n-1) \\ &\implies \sqrt{\frac{2 \mathbb{E}\left[V_n(\mathbf{X}) \right] \log \left( \frac{1}{\delta} \right)}{n-1}} = t \end{aligned} \nonumber $$Proof.
$$ \begin{aligned} \mathbb{E}\left[ V_n(\mathbf{X}) \right] - 2\sqrt{\mathbb{E}\left[V_n(\mathbf{X})\right]}\sqrt{ \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} \leq V_n(\mathbf{X}) &\implies \mathbb{E}\left[ V_n(\mathbf{X}) \right] - 2\sqrt{\mathbb{E}\left[V_n(\mathbf{X})\right]}\sqrt{ \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} + \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)} \leq V_n(\mathbf{X}) + \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)} \\ &\implies \left(\sqrt{\mathbb{E}\left[ V_n(\mathbf{X}) \right]} - \sqrt{\frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}}\right) \leq V_n(\mathbf{X}) + \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)} \\ &\implies \sqrt{\mathbb{E}\left[ V_n(\mathbf{X}) \right]} - \sqrt{\frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} \leq \sqrt{V_n(\mathbf{X}) + \frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} \overset{(i)}{\leq} \sqrt{V_n(\mathbf{X})} + \sqrt{\frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} \\ &\implies \sqrt{\mathbb{E}\left[ V_n(\mathbf{X}) \right]} \leq \sqrt{V_n(\mathbf{X})} + 2\sqrt{\frac{\log \left( \frac{1}{\delta} \right)}{2(n-1)}} = \sqrt{V_n(\mathbf{X})} + \sqrt{\frac{4\log \left( \frac{1}{\delta} \right)}{2(n-1)}} = \sqrt{V_n(\mathbf{X})} + \sqrt{\frac{2\log \left( \frac{1}{\delta} \right)}{n-1}} \end{aligned} \nonumber $$ where we use the fact that $\sqrt{a + b} \leq \sqrt{a} + \sqrt{b}$ in $(i)$.We can do similar manipulations of the second line in Eq. \eqref{eq:intermed-probs} to get, with probability $1 - \delta$: $$ \begin{aligned} \sqrt{V_n(\mathbf{X})} &\leq \sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{2\log\left(\frac{1}{\delta}\right)}{n-1}} \end{aligned} \nonumber $$
Proof.
We simply solve the following for $t$: $$ \mathbb{P}\left(V_n(\mathbf{X}) - \mathbb{E}\left[ V_n(\mathbf{X}) \right] > t\right) \leq \delta = \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) + t\right]} \right) \nonumber $$ Thus: $$ \begin{aligned} \delta &= \exp \left(-\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) + t\right]} \right) \\ &\implies \log (\delta) = -\frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right] + t} \\ &\implies \log \left( \frac{1}{\delta} \right) = \frac{t^2(n-1)}{2\mathbb{E}\left[V_n(\mathbf{X}) \right] + t} \\ &\implies \left(2 \mathbb{E}\left[V_n(\mathbf{X}) \right] + t \right) \log \left( \frac{1}{\delta} \right) =t^2 \\ &\implies \frac{\left(2 \mathbb{E}\left[V_n(\mathbf{X}) \right] + t \right) \log \left( \frac{1}{\delta} \right)}{n-1} = t^2 \\ &\implies \frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} = t^2 - \frac{2\log\left(\frac{1}{\delta}\right)t}{2(n-1)} \\ &\implies \frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2 = t^2 - \frac{2\log\left(\frac{1}{\delta}\right)t}{2(n-1)} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2 \\ &\implies \frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2 = \left(t - \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2 \\ &\implies \sqrt{\frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2} = t - \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)} \\ &\implies \sqrt{\frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2} + \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)} = t \end{aligned} \nonumber $$ Thus, with probability at least $1 - \delta$: $$ \begin{aligned} V_n(\mathbf{X}) - \mathbb{E}\left[ V_n(\mathbf{X}) \right] &\leq \sqrt{\frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta} \right)}{n-1} + \left(\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}\right)^2} + \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)} \\ &\overset{(i)}{\leq} \sqrt{\frac{2 \mathbb{E}\left[ V_n(\mathbf{X}) \right]\log\left(\frac{1}{\delta}\right)}{n-1}} + \frac{\log\left(\frac{1}{\delta} \right)}{2(n - 1)} + \frac{\log\left(\frac{1}{\delta} \right)}{2(n - 1)} \\ \implies V_n(\mathbf{X}) &\leq \mathbb{E}\left[ V_n(\mathbf{X}) \right] + 2 \sqrt{\mathbb{E}\left[ V_n(\mathbf{X}) \right]}\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} + \frac{2\log\left(\frac{1}{\delta} \right)}{2(n - 1)} \\ \implies V_n(\mathbf{X}) + \frac{\log\left(\frac{1}{\delta} \right)}{2(n-1)} &\leq \mathbb{E}\left[ V_n(\mathbf{X}) \right] + 2 \sqrt{\mathbb{E}\left[ V_n(\mathbf{X}) \right]}\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} +\frac{\log\left(\frac{1}{\delta} \right)}{2(n-1)} + \frac{\log\left(\frac{1}{\delta} \right)}{n - 1} \\ &= \left(\sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}}\right)^2 + \frac{\log\left(\frac{1}{\delta}\right)}{n-1} \\ \implies V_n(\mathbf{X}) &\leq \left(\sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}}\right)^2 + \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)} \\ \implies \sqrt{V_n(\mathbf{X})} \leq \sqrt{\left(\sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}}\right)^2 + \frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} \\ &\overset{(ii)}{\leq} \sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} \\ &= \sqrt{\mathbb{E}[V_n(\mathbf{X})]} + 2\sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2(n-1)}} \\ &= \sqrt{\mathbb{E}[V_n(\mathbf{X})]} + \sqrt{\frac{2\log\left(\frac{1}{\delta}\right)}{n-1}} \end{aligned} \nonumber $$ In $(i)$ and $(ii)$, we use the fact that $\sqrt{a + b} \leq \sqrt{a} + \sqrt{b}$.Finally, we just need an extension of Bennett’s inequality that is integral to the proof of Theorem 11.
Let $\mathbf{Z} = (Z_1, \dots, Z_n)$ be a vector of i.i.d. random variables with $Z_i \in [0,1]$. With probability at least $1 - \delta$, for any $\delta > 0$, we have that: $$ \begin{aligned} \mathbb{E}[Z] - \frac{1}{n} \sum_{i = 1}^n Z_i \leq \sqrt{\frac{2 V(Z) \log\left(\frac{1}{\delta}\right)}{n}} + \frac{\log\left(\frac{1}{\delta}\right)}{3n} \end{aligned} \nonumber $$ where $Z$ is any one of the i.i.d. coordinates of $\mathbf{Z}$, and $V(Z) := \mathbb{E}[(Z - \mathbb{E}[Z])^2]$. See Audibert et al.4for a proof.
References
Additional content from Maurer6 and Anthony and Bartlett7.
-
Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge: Cambridge University Press. ↩ ↩2
-
Wasserman, Larry. All of Statistics: a concise course in statistical inference. New York: Springer, 2010. ↩
-
Wikimedia Foundation. (2024, May 2). Bennett’s Inequality. Wikipedia. https://en.wikipedia.org/wiki/Bennett%27s_inequality ↩
-
Audibert, J.-Y., Munos, R., & Szepesvári, C. (2009). Exploration–exploitation tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science, 410(19), 1876–1902. https://doi.org/10.1016/j.tcs.2009.01.016 ↩ ↩2
-
Maurer, A., & Pontil, M. (2009). Empirical Bernstein Bounds and Sample Variance Penalization (arXiv:0907.3740). arXiv. https://doi.org/10.48550/arXiv.0907.3740 ↩ ↩2 ↩3 ↩4 ↩5 ↩6 ↩7
-
Maurer, A. (2006). Concentration inequalities for functions of independent variables. Random Structures & Algorithms, 29(2), 121–138. https://doi.org/10.1002/rsa.20105 ↩
-
Anthony, M., & Bartlett, P. L. (1999). Neural Network Learning: Theoretical Foundations (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511624216 ↩